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Deriving Efficient Graph Algorithms

John H. Reif William L. Scherlis
Aiken Computation Laboratory Department of Computer Science

Harvard University Carnegie-Mellon University

Abstract. Ten years ago Hopcroft and Tarjan discovered a class of very fast
algorithms for solving graph problems such as biconnectivity and strong connec-
tivity. While these depth-first-search algorithms are complex and can be difficult
to understand, the problems they solve have simple combinatorial definitions that
can themselves be considered algorithms, though they might be very inefficient or
even imfinitary. We demonstrate here how the efficient algorithms can be systemati- r
cally derived using program transformation steps from the intuitive but preliminary
definitions.

There are several justifications for this work. First, we believe that the evolution-
ary approach used in this paper offers more natural explanations of the algorithms
than the usual a posteriori proofs that appear in textbooks. Second, the derivations
illustrate several high-level principles of program derivation and suggest methods by
which these principles can be realized by sequences of program transformation steps.
Third, these examples illustrate how external domain-specific knowledge can enter

into the program derivation process. This is the first occasion that such efficient
graph algorithms have been systematically derived.

1. Introduction.

Discovery of efficient algorithms is a complex and undisciplined task, requiring sophisticated
knowledge of both general-purpose algorithm design techniques and special-purpose mathematical
facts related to the problems being solved. While the process of algorithm discovery is certain to be
exceedingly difficult to mechanize, there is much to be learned-both about algorithms and about
programming-from the study of the structure of derivations of complex algorithms.

In this paper we demonstrate how program transformation techniques can be used to derive
efficient graph algorithms from intuitive specifications. These specifications are simple combina-
torial definitions that we choose to interpret as algorithms, even though-as algorithms-they
might be very inefficient or even infinitary.

The derivations suggest ways in which algorithm-design knowledge separates from domain-
specific knowledge. While the depth-first algorithms we derive depend on deep combinatorial
properties of depth-first spanning forests, the algorithms can nonetheless be derived using only
general-purpose program derivation tech niques-supported by the necessary combinatorial lemmas.
Indeed, we are optimistic that this sort or separation can be achieved in general, and surveys such
as fTarjan77] appear to support this possibility. If this proves possible, then the program derivation
techniques refined and applied here and elsewhere can ultimately be of use in practical mechanical
programming aids--aids designed primarily for the programmer, not the algorithm designer.



Program derivation tcchniqucr also provide a natural way of explaining coaplicated algo-
rithms. Conventional proofs may succeed in convincing a reader of the correctn.ess of an algorithm
without supplying any hint of why the algorithm works or how it caine about. A derivation,
on the other hand, is analogous to a constructive proof; it takes a reader step by step from an
initial algorithm he accepts as a specification of the problem to a highly connected and efficient
implementation of it. As in (Clark80, we are deriving a family of related algorithms: Even though
the algorithms we derive here do not all have the same specifications, the strong relations between
them become manifest in the explicit structure of their derivations.

In Section 2 of this paper we derive a family of depth-first search algorithms. These are
generalized and utilized in quite different ways in the biconnectivity algorithms of Section 3 and
in the strong-connectivity algorithms of Section 4. These algorithms were discovered by Hopcroft
and Tarjan and are (conventionally) presented in [Tarjan72] and fAHU74]. The variant of Tarjan's
strong-connectivity algorithm that we derive in Section 4 is attributed to Kosaraju. (We can also
apply similar techniques to derive the almost-linear-time algorithm of [Tarjan73] for flow-graph
reducibility.) In the conclusion we discuss further the implications of this work.

Because we seek to demonstrate how derivations, clearly presented, can lead to a better
understanding of the algorithms derived, the emphasis in this paper is primarily on the conceptual
structure of the derivations and only secondarily on the actual formal transformation techniques.
Indeed, most of the transformation techniques we use have appeared elsewhere, though perhaps
in other forms. We make use of transformations for realizing complex recursive control structure
as explicit data structure similar to those described in [Bird8O], [Scherlis8O], and [WandSO]. In
addition, we make implicit use of transformations such as those described in [Burstal77] or
[Scherlis8l] to effect the merging or "jamming" of loops and to specialize function definitions.
Discussion of loop jamming techniques also appears in [Paige8l].

We do not, in this summary, specify precisely the programming language we use, except to
say that it is a straightforward LISP-like (or IVIL-like) applicative language supplemented with
assignment to variables and modification of data structures. For the sake of clarity of derivations,
it is important that the programming language not be overly constrained. In particular, certain
features that are difficult to implement but which have clear semantics often allow derivations
to be quite straightforward. This is vividly illustrated in the case of the SETL language in the
derivations of [Paige81]. Another example is the language used in [Scherlis8l], which was extended

* (to include expression procedures--used, for example, in Algorithm 3.1 below) in order to keep the
set of transformations simple and yet strong-equivalence preserving.

2. Depth-First Search.

We consider first the case of undirected graphs. Let G - (V, E) be an undirected graph with
adjacency list representation; for each v E V, Adj3v) is a canonically ordered list of edges connected
to v. Observe that v E Adj(u) if and only if u E Adj(v).

Paths. As our starting point, we take the combinatorial definition of a path in a graph. Let
u and v range over vertices.

pfht(u,v) (us = v or (3w E Adj(u))path(w,v)) (2.0)n 2
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This definition, considered as an algorithm, has potentially infinite execution paths. Suitable
semantics for the or operator would allow this algorithm to terminate correctly whenever there is a
graph path, but for many graphs and vertex pairs this "algorithm" has no finite execution paths.

We can, however, distinguish two kinds of infinite execution paths-looping paths and diver-
gent paths. Roughly, a nonterminating path is a looping path when only finitely-many distinct
recursive calls are made along that path; if the number of distinct calls grows without bound, then
the path is divergent. In the case of finite graphs (the only graphs we will consider) Algorithm 2.0
can exhibit looping, but, because u and v are vertices and the set of vertices is finite, it cannot

exhibit divergence.

By a semantic sleight of hand, looping evaluations can be replaced with finite ones. In the case
of Algorithm 2.0, it is consistent with our interpretation to replace all looping paths with false.
We effect this change by introducing explicit data structure to mark nodes as they are visited; by
examining this data structure, the program can foreclose any potentially looping execution paths.
(Transformations for carrying out this kind of change are sketched in [Scherlis80] and are related
to the closed-world database techniques described in [Clark78] and [Reiter78].)

The transformation has two steps. First, we observe that the second parameter of path never
changes and so can be made free. This reduces the number of possible recursive calls and hence
the amount of data structure required.

Path(u, V) *= vpath(u)
where (2.1)

vpath(u) 4- (u == v or (3w E Adju)) vpath(w))

Next, we introduce a boolean array, visit(V), initially false for each vertex v C V.

path(u, v) 4 begin visit(V) - alse; vpath(u) end
where

vpath(u) (2.2)
if visit(u) then false

else begin visit(u) .- true; (tu = v or (3tu E Adj(u)) vpafh(w) ) end

(The value of a block is the value of the last expression unless some other expression is marked by
the word value, in which case the value of that expression is saved when it is evaluated and returned
after evaluation of the remainder of the block is complete; by convention imperative statements
are always enclosed in blocks.) This imperative program terminates for all finite graphs. Note that
the same effect could be acheived in a purely applicative framework by adding another parameter
(representing a continuation), but the resulting program would be less clear for our purposes.

The finite depth-first search algorithm is obtained by rotating the initial visit test from callee
to caller and by writing vpath as a function, dfs, defined such that

v E dfs(u) 9:* path(u, v), i.e., dls(u) = {v I path(u, v)}.

The function dfs will thus precompute the set of possible paths from a given vertex-the connected
component associated with that vertex. (Again, we assume visit(V) is initially false.)

dfs(tu) 4-
begin

visit(u) -- true; (2.3)
(U) U U.EAd,(.)(ir visit(iv) then o else dls(w))

end
3

. . . .. . . . ...



This function can easily be derived by specializing the definition of path to the s t computation
specified above using the techniques of [Schcrlis8l]. (A more detailed example of specialization
appears in Section 3 below.)

Connected Components. The set of connected components

comps(V) 4- Uev { begin visit(V) false; dts(r) end"

can be quickly computed by making use of the visit array.

comps(V) 4- begin visit(V) - false; UEV (if visit(r) then 0 else {dts(r))) end (2.4)

(This is derived by using the applicative representation for the visit array and noting redundant
components.) This program requires O(IVI + IEI) time.

Depth-First Spanning Forests. The fast depth-first search algorithms are based on subtle
combinatorial properties of the depth-first spanning forests implicit in the prior algorithms. In the
case of undirected graphs, the depth-first search divides the edges of a graph into two sets, tree
edges, the edges actually traversed during search, and the other edges, which are called fronds. We
use the notation u --* v to indicate tree edges and u -i4 v to indicate fronds.

We will occasionally need to distinguish the fronds explicitly during search. With respect to
Algorithm 2.3, we observe that the fronds are exactly those edges (u, w) for which the visit(w) test
is true but (since the graph is undirected) such that w is not the father of u in the search tree.

dtS(is) OM
begin

visi(1) .- true;
P4U UEAds,)' v"*ft(W) (2.5)

then (if w 34 fathe u) then assert [u .); w
else as-ertu w A tatheq) = u]; dfs(w))

end
Here we have decorated Algorithm 2.3 with assertions distinguishing the two sets of edges. The
lather function, which is defined implicitly by the assertion, can be realized explicitly using data
structure, in effect transforming the assertion into an assignment. This requires a very simple proof
by induction that the instance of father(u) in the test will have been previously assigned a value.
(In the case of a root, father can return a special value, say A, that will cause the test to fail.)

Using the specialization techniques mentioned above, we can eliminate all references to the
lather function/array by introducing a new parameter to dfs that will be the father of u in the
depth-first search tree. This requires a slight modification of the definition of comps. (For usthetic
reasons we also reorient the nested conditionals.)

comps(V) 4= Urev(if visit(r) then o else {dls(r,A))
ds(u,i) v)

begi
visit(u) -ru; (2.6)
{u) U U.C.Ad(.)(if-visit(w) then asertlu -- w]; dfs(w,,,)

eleeif w , v then assert[u -" w]; 0
else 0)

end

Similar derivations can be carried out in the case of directed graphs; the resulting algorithms
are simpler since the father tests (and associated parameters) are not needed.

4
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Tree Orderings. All of the lemmas on which the depth-first-search algorithms arc based make
use of "non-local" properties of depth-first bcarch trees; that is, they require testing relations
between vertices that may be an arbitrary distance apart in the trees. In particular, both the
biconnectivity and strong connectivity algorithms are based on lemmas that make use of ancestor
or descendent orderings in the search forest. We make derivation steps here that will enable these

relations to be precomputed entirely in the course of a single depth-first-search pass. (We now
expand our discussion to include directed graphs as well as undirected graphs.)

The descendent ordering is the transitive closure of the ordering represented by the edges of
the depth-first search forest. That is,

v >- U if and only if there is a path of tree edges from u to v.

We can introduce this ordering into the dfs program simply by adding an appropriate assertion,
as we did inthe case of father. After the entire graph has been traversed by ds, the descendent
ordering will be the transitive closure of the asserted relation, >-. An easy induction proof can
establish that no contradictory relations are asserted. (We have temporarily eliminated the father
parameter in order to extend the applicability of this algorithm to directed graphs.)

dl s(U) 4-

visit(u) +- true; (2.7)
(U) U U.eAdj(,)(if -visit(w) then assertlis >- u]; dts(w, u) else o)

end
We seek linear-time algorithms, so we will not be able to accept a naive implementation of this

algorithm-computation of the transitive closure alone would typically require 0(V) time. We
must therefore continue the derivation process and make use of further combinatorial properties.
Since we are concerned with descendent orderings in trees, it is natural to consider introducing
explicit pre- and endorder relations represented by numberings. Both numberings can be computed
in linear time in a single tree traversal and, in combination, determine the descendent ordering.

LEMMA 2.1. Let T be a tree with vertices numbered in preorder and endorder (in arrays pre(V)
and end(V)). Then

U >- v if and only if pre(u) > pre(v) and
endju) < end(v).

That is, u is a proper descendent of v if and only if both u succeeds v in the preorder numbering
and u precedes v in the endorder numbering.

Preorder and endorder numbers in the depth-first search forest can be assigned through the
use of assignable free variables (that we will call p and e) in the dfs procedure. For brevity, we omit

* intermediate derivation steps that lead to the following imperative algorithm (on either directed
or undirected graphs) for simultaneously calculating the two numberings.

p.-0; e.-0;

d-s(u) o-
begin

vsit(i)- true; (2.)
pre(1) - p .- p + 1;
value ({u) U UWEAd,(.)(if -.vishf(w) then dts(w, u) else o));
end().- e.- e + 1

end



(The value notation is explained in the remark following Algorithm 2.2.) if prc(V) is initially zero
then th. visit array can be eliminated by replacing the if test with th test pre(w) = 0; we do this
below.

Certain ancestry tests do not require use of both of the numberings. In particular, if it is known
that two vertices are related by the descendent relation, but it is not known in which'direction they
are related, then (by a simple corollary of the Lemma above) either preorder or endorder suffices.
Since the preorder numbering is also useful as a replacement for the visit array, we choose it. (The
resulting algorithm will be applied in the next section to undirected graphs, so we reintroduce the
father parameter and corresponding assertions.)

p - 0; pre(V) 4- o
dts(, ,,) 4ffi

begin
dl (u) 0 P • 4-p-P + 1; (2.9)
(U) U UjEAd(.)(if pe(W) = 0 then assert[u w io]; dts(w, u)

eheif u ,v then asert[u -14 w]; 0
else 0)

end

3. Computing Biconnected Components.

Let G = (V,E) be an undirected connected graph. An articulation point is a vertex whose
removal disconnects G. A graph is biconnected if it has no articulation point. A biconnected
component C is a maximal set of edges that contains no vertex whose removal disconnects the
vertices contained in the edges of C.

Our derivation of the linear-time algorithm for detecting biconnected components is based on
a technical lemma characterizing articulation points. Once the articulation points are found then
the biconnected components can be collected in a single depth-first traversal. Assume that the
depth-first search algorithm has been performed on a graph to obtain a depth-first search tree.

LEMMA 3.1. (Hopcroft-Tarjan) A vertex a of a depth-first search tree is an articulation point if (1)
it is the root and has more than one son, or if (2) there is a son u of a none of whose descendents
have a frond to a proper ancestor of a. That is, if a is not the root, then it is an articulation point
exactly if it has a son u such that Low(u) _ a, where

Low(u) min >. (Lowset(u))

and Lowset(u) = {u} U {z I a >- UA 8 a- z).

Note that the elements of Lowset(u) are always comparable under >-, so we may use the
Lemma 2.1 to replace our explicit use of the '>-' ordering by tests on pre values, as in Algorithm
2.9.

We first derive an algorithm for detecting articulation points and then modify it to enable
the biconnected components to be collected on the fly. Articulation point detection is achieved by
specializing the dis algorithm in three stages-computation of Lowset, computation of Low, and
assertion of articulation poirts.

6
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Lowset Computation. Since s >- u if and only if s E dis(u), we see that Lowset(u) is equivalent
to {X I s E dis(u) A 8 -- x}. We derive a program to compute the value of this expression by
expanding the definition of dis given by Algorithm 2.9. This will require introduction of the father

parameter to dfs in the set specification. Direct substitution for dfs and preliminary simplification
yield

{x IsEdts(u,v)Aa- +z
begin

pTe(u) .- p - p + 1;
{z Ia E ul,} A 4 (3.1)

U ( I s E U-EAdj(i)( pv(w) = 0 then assert[u w]; dfs(w,u)
eleeif w / v then &s@ertlu -i* l]; 0
else 0) As -. z}

end.
(For conciseness, we omit the initialization of p and pre.) Distribution of the set abstraction into
the union and conditional and simplification give

{zI s E ds(u,,v) A a -+ } -
begin

pre() -p -- p + 1;
(Z I Us -44

U UwEAd.()(if pre(w) = 0 then assert[u --. -o]; (3.2)
(P Ia* s ts(w, u) A a- }

eleif w 96 v then aseert[u -o w]; o
else 0)

end.

We can now form a recursion; this is done by replacing both instances of the dfs set abstraction

with a name, Lowsef(u, v) (equivalent to the old Lowset with a father parameter added). Further,
since all the fronds for u are computed inside the loop we decide to commute the outer union,
postponing calculation of {z I u "; x) until the fronds have been detected.

Lowset(s, is) 4=
begin

pre(u) - p - p + 1;
UeAd7(,,)(f pe(is) = 0 then assert[u -. u]; Lowset(wu, u)

elif w 34 v then assert[u 44 w]; 03
else 0)

U {Z I --. }
end

Now since x I x ) } is equivalent to

U.EAd,(.)(it (u -i+ w) then {w) else o),
we substitute this expression into Algorithm 3.3, merge the unions, and simplify on the basis of
the assertions to get the final Lowset program.

Lowset(U,i,) 4=
begin

pre(u) 0.- p*- p + 1;
UweAd(,)(if pre(w) = 0 then Lowset(wu, u) (3.4)

elcit w v then {i)
else 0)end

(The assertions have been dropped to avoid clutter.)

7



Low Computation. A similar specialization sequence i now us(.d to trarsform this algorithm

into a program for Low(u, v), defined as min>. ({u} U Lowsel(u, v)). where v ib the father of u.

Low(u, V) 4-
begin

pre(u) *- p .- p+ 1;
min(u,minwEAd3(,)(if pre(w) - 0 then Low(w, u)) (3.5)

elseif w : v then w
else oo)

end

(Here co denotes a maximal vertex value; note that u would do.) We obtained this program by
expanding the definition of Lowset in the definition of Low, simplifying, and renaming.

Articulation Point Detection. We are now ready to locate articulation points. Excepting the

root, the articulation points can be located simply by inspecting Low values in the depth-first- search

tree. That is, u is an articulation point if u -+ w and Low(w, u) _ u. We specialize as before, but
this time the effect is simply to introduce the appropriate assertion into the search algorithm.

Low(u, v)
begin

pr(u) 4- p - P+ 1;
min(u, minwEAdj(u) (if pre(av) = 0

then begin if t >- u then assert[Art(u)]; I end (3.6)
where I = Low(w, u)

elseif w u v then uw
else oo)

end

(Just as with '>-', if Art is not asserted for a particular vertex then that vertex is not an articulation
point.)

As a final step, we make the min calculation explicit by introducing a new local variable in
Low. At the same time, we replace instances of '>-' with comparisons of pre values (following our

earlier remark). The values of Low are thus now integers rather than vertices; our main interest,

however, has become the assertions regarding articulation points.

p .- 0; pre(V) - 0; Low(r, A);

Low(u, V) €=

begin var m;
M *- pre(u) -- p 4- p + 1;
for w E AdAu) do (3.7)

if pre(w) = 0
then begin if t > u then assert[Art(u)]; t end

where t = Lov(w, u)
elseif w 3 v then m -- rnin(m, w);

end

Biconnected Components. The following lemma will enable collection of biconnected com-
ponents to be performed simultaneously with the detection of articulation points. As before, assume

8



that depth-first search has been performed on a given graph. Let C be a biconnected component
and let VC be the set of vertices contained in the edgiL of C.

LEMMA 3.2. (llopcroft and Tarjan) For every biconnected component C, there is a unique vertex
a E Vc such that v >- a for all v E VC and a. is the root of the search tree or an articulation point.

[[ For brevity, the remainder of this section has been omitted. It will appear in the final paper. ]]

4. Strongly-Connected Components.

In this section we derive an interesting linear time algorithm for strong connectivity attributed
to Kosaraju. Let us return to the original definition of path. Let G = (V,E) be a directed graph
and let u and v range over the vertices V.

path(uv) - =v or ( wEAdi-u))path(uv)) (4.4

The path relation holds between u and v just when there is a directed path in G from u to v. Since
we are dealing with directed graphs, it will be helpful to test reverse paths as well.

revpath(u,v) 4- (u = v or (:w E Adj1 (u))revpath(w, v)) (4.2)

Clearly, path(u, v) if and only if revpath(v, u).

Two vertices u and v in a graph are strongly connected if path(u, v) and revpath(u, v) both
hold. A maximal set of strongly connected vertices is called a strongly connected component. To
find the strongly connected component associated with a particular vertex r, if suffices to collect
all vertices u reachable from r such that path(u, r). For, if both v and w have this property with
respect to r, then by transitivity of the path relation, they are themselves strongly connected. This
implies that strongly connected components are disjoint.

strong(V) 4-- Urev {SC(r,r)}

sc(u,r) 4= {u} U U,.eAd 3(,)(if path(u, r) then sc(w,r)) (4.3)

(Note that sc is not yet a terminating program.)

The trick in this derivation comes from the observation that the second parameter of the path
relation remains constant on all recursive calls of sc for a particular root. This suggests that we
should be able to do a single depth-first traversal from r and use the orderings defined in Section
2 to test ancestry.

There are two ways we can obtain this advantage. First, we could use revpath instead of path,
and compute ancestry using its depth-first search tree (since the dfs realizations of path and revpath
do recursion on the first parameter). Alternatively, we could reverse the direction of the search in
sc above (using Adf' instead of Adj), causing the path test parameters to be reversed, and thus
use the path search tree. In either case, we will need to traverse the graph in both the forward and
backward directions.

The situation is symmetrical, and we arbitrarily choose the latter alternative. By reversing
Algorithm 4.3 and introducing a boolean array (as we did in Algorithm 2.2), we obtain

strong(V) 4= begin visit2(V) .- false; UEv (if visit2(r) then 0 else {scr(r,r))) end

scr(u, ,') 4-

in (4.4)
si(2(u) *- true;

tU) U UeAdf' (u)( -iisit2(w)A path(r, w) then scqwr))
end

9
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(We call the boolean array visit2 to avoid name conflict with the boolean array used in thle forward
depth-first search.)

A Blind Alley. It may appear that we could obtain an acceptable implementation of Algorithm
4.4 by replacing path(r, w) with the test w E dfs(r) and factoring the dfs calculation out of scr into
strong.

strong(V) 4 begin
visit2(V) .- false;
UIEV (if visit2(r) then o else {scr'(r, r, dts(r))))

end
scr'(u, Y, D) 4-- (4.5)

begin
visit2(u) 4- true;

Wu) U UWEAd" (,,)( if -Ovisit2(w) A u ED then scr'(w, r,D))
end

Unfortunately, the set of roots required for the reverse-search forest is not necessarily the same
as that required for forward search, and so the dfs(r) calculation in strong could do redundant
traversals.

Testing Ancestry. Rather than solving this problem directly, we choose instead to consider
more subtle methods for realizing the path test. In particular, we follow the specialization methodol-
ogy and make use of facts about the context in which the path test occurs in order to produce a
specialized program for that test.

As in the case of biconnected component detection, we will need to state several structural
lemmas. These lemmas will suggest methods by which the specialization can be achieved and
hence by which strongly connected components can be detected quickly. Again as in the case of
biconnectivity, the lemmas refer to depth-first search forests and the descendent relations they
induce over vertices.

forest(V) t- begin visit(V) -- false; for r E V(i -visit(r) then dfs(r)) end

cdts(t) 4-

visit(u) 4- true; (4.6)

for w E Ad( u) do
V -visit() then a.ser[ >- A i -. w]ds(w)

end

(As before, we will let '>-' stand for its own transitive closure; thus, if u and v are vertices, then
u >- v if u is a proper descendent of v.)

Assume that a depth-first search has been performed on a directed graph to obtain a depth-first
search forest.

LEMMA 4.1. For each strongly connected component S there is a unique vertex r, called the root
of S, such that r = min>. (S).

It follows from this lemma that if r is the root of a strongly connected component and there
is a path from w to r then

path(r, w) if and only if w - r

10



This fact will enable us to replace the path test. in Algorithm 4.4 with a test of the desccndent
relation. Recall from Section 2 that the descendent relation can be computed efficiently using pre-
and endorder numberings. (We do this in Algorithm 4.10 below.)

We will, however, have to modify the strong program so r ranges only over the strongly-
connected-component roots, otherwise our replacement would be invalid. A further lemma below
will enable us to obtain the roots easily.

strong(R) 4- begin visit2(V) *- false; USER {sc4r, r)} end
sc(u, r) e

begin
visit2(u) 4- true;
{U} U UwEAdj,-(u)(if -Wvsi2(w) A w >- r then scr(w, r))

end

We assume here that R is exactly the set of strongly-connected-component roots. Since the
components are disjoint and since by Lemma 4.1 each has exactly one root, strong(R) will yield
all the strongly connected components in the graph.

Finding Roots. We must now consider the problem of efficiently locating the roots. Observe
that it follows from the lemma above that every root in the depth-first search forest is the root of
a strongly connected component. This suggests that we should modify forest to collect the roots
of the depth-first search trees as they are explored.

Iorest(V) = begin visit(V) W- false; UEv (if -visit(r) then dfs(r); {r) else 0) end (4.8)

Finding More Roots. Algorithm 4.8 collects only a subset of the component roots. The
following lemma suggests an approach for locating the remainder of the roots.

LEMMA 4.2. Let S be a strongly connected component. For each v E S and each w 'S such that
v -w, w is the root of a strongly connected component.

Since all vertices are included in the depth-first forest, the roots specified by this lemma
together with the roots collected by forest comprise the set of all component roots. The following
program returns a set of the new strongly connected component roots at the outgoing edges of a
given component. Let r be the root of component S.

update(r, S) 4-
UvES (UweAd,(,) (it -vsi2(w) A v -v w then {w) else0)) (4.)

This program essentially implements the lemma, with the additional optimization of examining
visit2 to avoid collecting redundant roots. (We omit the derivation of this optimization.) Also, note
that it is possible that the representation of S might make the outer union difficult to compute;
though we do not do it here, it would then be advantageous to use the observation that the
descendents of a strongly connected component can be found by depth-first search and do the
search instead.

I-



The Algorithm. We have now resolved the strongly conn-ct.d component algorithm into twophases. First, forest is used to collect depth-first search forest root and to precompute the pre-

and endorder numbering used for testing ancestry. Second, strong is uscd to do reverse depth-first
searches from these roots, collecting strongly connected components along the way. The update
procedure is used to collect new roots as strongly connected components are found.

va. p, e, pre(V), e,4(V), visit2;
forest(V) =

pre(V) . 0;
P +- e +.- 0;
UEv(9r p,(r) = 0 then dts(r); {r) el- 0) end

d -s(u) 4-
begin

prcu) -p .- P + 1;
value ({,, u U .EAd,)()f pre(W) = 0 then assert[u -. wv]; dfs(w, i) else 0));

end(u) - C + 1
end

sirong(R) t=

begin var , S; (4.10)
choose r E R;
S .- scrr, );
assert [Comrponent(S);
strong(update(r, S) U R - {)

end

scU' rv) 4-
begin

visit2(u) 4- true;
fu) U.EAd rl, ()(f-'visit2(w) A pre(w) > p.e(r) A eiad(i) < en4r)

then scr(w, r))
end

update(r,S) 4--
Ues (U.C-Adj(.) (if -'visit2(w) A v -w i then {) else 0))

Of course, the program derivation process has no definite termination criteria. We could continue
improving this algorithm by realizing the various implicit loops, by frequency reduction (e.g., for
pre(r) calculation), by eliminating set operations (e.g., in strong), and in many other ways. We
conclude at this point, however, since the structure of the linear-time algorithm is now most clearly
apparent and since the next set of derivation steps fall within the range of established techniques.

S. Conclusions.

This work is a stop towards developing a new paradigm for the presentation and explication
of complex algorithms and programs. It seems to us insufficient to simply provide a program or
algorithm in final form only. Even with "adequate" documentation and proof, the final code cannot
be as revealing to the intuition as a derivation of that code from initial specifications.

Ideally, a programming environment should support the programmer in the process of building
derivations.

12
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In a specific problem domain, such as graph algorithms, certain facts and fundamental algo-
rithms should be available for access. The value of this store of facts should not be underestimated.
In our derivations, for example, certain algorithms were repeatedly used as paradigms for the devel-
opment of other algorithms. This kind of analogical development is similar in heuristic content to
the goal-directed transformation of algorithms required to carry out the loop merging optimization
or in order to create recursive calls during specialization.

We are still very far from automating the heuristic side of the derivation process. In fact, we
argue that at this point our efforts are better directed at discovering and exercising useful transfor-
mations, developing foundations for proving their correctness, and developing tools for interactive
program development that can make appropriate use of outside domain-specific knowledge. For
example, it appears that once the necessary outside lemmas are stated and proved, only a modest
deduction capability would required in such a programming environment; it would be used mainly
to establish 'preconditions for transformations and application of lemmas.

Finally, by storing program derivations as data structures in a program development system,
program modifications can be carried out simply by making changes at the appropriate places in

the derivation structure; if only the final code is available, the conceptual history of the program
must, in effect, be rediscovered.

Acknowledgements. We wish to thank Margaret Beard for her help in the initial stages of this
work.
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